Goddard Information Science and Technology Colloquium

Measuring Information Productivity

Paul A. Strassmann, Acting NASA CIO, September 18, 2002

What is Productivity?

Example of Productivity Gain Calculation – The CEO View

	Period B Period A		% Changes	
Revenue	\$12,000,000	\$10,000,000	+ 20%	
Employment*	80	100	- 20%	
Productivity (Revenue/Employee)	\$150,000	\$100,000	+ 50%	

* 20 employees outsourced

Example of Productivity Gain Calculation – The CFO View

	Period B		Period A	Productivity Gain	,000,
Revenue	\$12,000,000		\$10,000,000		,000
Purchases	\$6,000,000		\$4,000,000		000,
Value-Added	\$6,000,000		\$6,000,000		,,000
Net Assets Employed	\$7,000,000		\$5,000,000		,000
Cost of Capital	9.0%		7.0%		7.0%
Economic Value-Added	\$5,370,000		\$5,650,000		
Employment	80		100		,000
Productivity (Economic Value-Added/Employee)	\$67,125		\$56,500	19%	
Productivity (Economic Value-Added/Employee)			\$67,12	5 \$50	6,500

A Theory of Information Productivity

An Information Management View

Cost Structure of a U.S. Manufacturing Corporation

Transaction Costs

- Organization of Employees and Users
- Information Processing
- Coordination of Suppliers, Costs of Acquisition
- Motivation of Customers
- Managing Distributors
- Compliance with Regulations
- Satisfying Shareholders and Lenders
- Fees, commissions, tolls and taxes
- Research and development

Accounting Treatment of Transaction Costs

- Sales, General & Administrative Costs
 Marketing
 Sales people
 Management
 Advertising
 Training
 I.T. Costs
- Research and Development Costs
- Reported in audited financial statements

Illustrative Case: 1998 General Motors

	\$000s	% of Revenues	
Revenues	\$161,315,000	100.0%	← Transactions
Purchases	\$87,000,000	53.9%	
Direct Costs	\$31,788,000	19.7%	
SG&A + R&D	\$17,330,000	10.7%	Information
Depreciation	\$11,978,000	7.4%	Transaction
Other Operating Expenses	\$8,800,000	5.5%	Costs
Taxes	\$1,463,000	0.9%	
Net Income	\$2,956,000	1.8%	

GM Cost of Goods Delivered per Transaction \$'s Declined

GM Market Share Declined

Competition Among Firms with Different Transaction Costs

Operating Results for Firms with Different Transaction Costs

Never Confuse Information Management vs. Info Technology

CIO Must Focus on Productivity of Information

Info. Productivity = Information Value Costs of Information

® Information Productivity is a Registered Trademark of Strassmann, Inc.

Fundamental Measure in an Information-Based Economy

Information Value = Economic Value-Added (EVA)

Key Equations for Calculating Information Productivity

Economic Value-Added (EVA) =

Accounting Profit – Cost of Shareholder Capital

Cost of Shareholder Capital =

Cost of Capital * Shareholder Equity

Cost of Capital = Risk-Free Interest + Beta*Risk Premium

How to Increase Information Productivity

Increase Value-Creation by Information

Information Productivity® =

Information Value-Added
Information Costs

Decrease Costs of Information

Productivity Assessment

Productivity Case Study

Pick Look-Alike Firms for Making Productivity Comparisons

Company Name	Number of Employees - 1999		
Competitor A	57,100		
Competitor B	51,656		
Competitor C	54,500		
Competitor D	97,800		
Competitor E	62,300		
Competitors F	51,000		
Your Company	<mark>26,500</mark>		

Calculate Information Productivity

Company Name - All data in 1999 \$Millions	Net Income	Cost of Capital - %	Net Financial Capital Employed	Costs of Information Management	Information Productivity
Α	\$5,891	8.536	\$13,242	\$7,268	65.5%
В	\$2,446	8.08	\$7,428	\$4,035	45.7%
С	\$4,167	8.044	\$8,645	\$8,830	39.3%
D	\$2,110	8.842	\$5,165	\$4,625	35.7%
F	\$3,179	8.284	\$8,887	\$9,127	26.8%
Your Company	<mark>\$4,167</mark>	<mark>8.338</mark>	<mark>\$16,213</mark>	<mark>\$13,103</mark>	<mark>21.5%</mark>
G	\$-1,227	7.492	\$6,215	\$6,780	-25.0%

Compare Historical Performance of Look-Alike Firms

Productivity Assessment

Case Study – Public Sector

How to View Public Sector Costs

Total Agency Budget Agency Value-Added Fund Transfers Service Delivery Costs

Transaction Costs

Calculating Agency Information Productivity

Information Productivity of the New York City Board of Education:*

Information Productivity =
$$\frac{$1,972*}{$4,135}$$
 = 48%

* SOURCE: Strassmann, P.A., The Business Value of Computers, 1990, p.91. In annual Costs per pupil, 1988-1989.

Compare Costs and Productivity Trends in Public Sector

Productivity Assessment

Case Study – Value-Chain Productivity

The Real Problem: Transaction Costs in the Value Chain

Costs in a Supply Chain

Costs in a Supply Chain

Potential Supply Chain Gains

The Total Value Chain

Potential Total Gains

Total Transaction Productivity for the Value Chain

	Cost of Goods	Transaction Costs	Transaction Producti∨ity	
Corporate (Agency) Case	79%	16%	497%	
Supply Chain Case	34%	34%	100%	
Supply + Distribution Chain Case	64%	81%	79%	
Supply + Distribution Chain Case			64%	

Information Technology Did not Cut Transaction Costs - USA

Findings

- Accounting of total transaction costs is necessary for NASA to assess Agency productivity performance.
- Major gains in productivity possible primarily through re-structuring and disintermediation.

Summary of the "Information Productivity Assessment"

- New metrics needed to assess information
- Information Productivity can be quantified
- Public sector Information Productivity measurements are feasible

Goddard Information Science and Technology Colloquium

Addendum

Paul A. Strassmann, Alinean Corporation

ValueIT Software Based on "The Business Value of Computers" and "Information Productivity" by P.A. Strassmann

ValueIT Includes Information Productivity Benchmarking

Peer Group Selection Criteria for Benchmarking

Information Productivity Assessments Calculated

A Wide Range of Peer Comparisons Feasible

